MCF

— Version 1.2 (January 7, 2000) —

A network simplex implementation.

Andreas Lobel

Contents

INntroduction.icuiiiiiiiiiiii it tii ittt tetteaeeaattantatacaantantanannns 3
L0034 F- 1 T = T 7
MCF data structures.iiiiiiiiiiieieiieieiieieinenenssssstststssnsssosonns 8
3.1 MCF node — Node deScription oo e e 10
3.2 MCOF_arc — Arc deScriptionot e 13
3.3 MCF network — Network description oo, 16
MCF Interface.euiuiiiitiiiiiii it iiiiitittesteseesostaseessesassassansnnns 22
4.1 Problem reading and writing. ... i 22
4.2 Primal network simplex.o e 25
4.2.1 Slack DasIS. ¢ttt e 25

4.2.2 Main iteration loop.t 26

4.2.3 Pricing. .o 27

4.2.3.1 Multiple partial pricing.ccoeiiiiiiiiiiiiii 27

4.2.3.2 First eligible arc rule.o 28

4.2.3.3 Dantzig’s rule. 29

4.3 Dual network SImplex. ...t e e 29
4.3.1 Start DASIS. ot 30

4.3.2 Main iteration loop. ... e 30

4.3.3 Pricing. .o 31

4.3.3.1 Multiple partial pricingo 31

4.3.3.2 First eligible arc rule. 32

4.4 MOF Utilities. . eee ettt e e 32
ZIB Academic LiCenSe.iuuiitiiiniiieiiin s enetneenttesossasonionsansnsennns 36

This page has been automatically generated with DOC++ 2

DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

Introduction.

This is the documentation of MCF. MCF is an implementation of a primal and a dual network simplex
algorithm. The documentation gives a description of the minimum cost flow problem, the used data
structures, and the library interface. How the functions of the library can be used is briefly shown in the
file mcflight.c or, in details, in main.c. Please notify the ZIB Academic License conditions at the end of
this documentation.

Performance.

MCF has been tested with several classes of artificially generated NETGEN problems and with real-world
problems arising from vehicle scheduling (e. g., see Lobel [1998]) and telecommunication problems (e.g.,
see Eisenblatter [1998] and Borndorfer, Eisenblétter, Grotschel, and Martin [1997]). Our computational
experiments have always shown a good polynomial behaviour of our code. Even truly large-scale real-
world instances with several thousand nodes and several million arcs can be solved quickly. The code
was checked with Purify making this implementation quite reliable and robust, for more information see
http://www.rational.com.

Commercial Applications.

MCEF is used commercially for vehicle scheduling in public transit, e.g., in the MICROBUS system of
the IVU AG, Berlin, for information see http://www.ivu.de. Moreover, a simplified vehicle scheduling
solver, employing MCF as the workhorse, has become a CINT2000 integer benchmark of the SPEC
CPU2000 Benchmark suite, for more information see http://www.spec.org.

Literature.

The network simplex algorithm with upper bound technique is a specialised revised simplex algorithm,
see Dantzig [1963] or Chvatal [1980], that exploits the structure of network flow problems. The linear
algebra of the simplex algorithm is replaced by simple network operations. Helgason and Kennington
[1995] and Ahuja, Magnanti, and Orlin [1989,1993] describe the (primal) network simplex algorithm and
give pseudocodes, implementation hints, etc. Veldhorst [1993] compiled a bibliography containing 370
references to network flow papers published by 1993.

Problem definition.

Given a connected digraph D = (V, A), a linear cost function ¢ € Q*, lower and upper bounds [€ Q
and u € Q such that ! < u, and node imbalances b € Q such that 1"b = 0. Unbounded lower or upper
bounds can be defined, but are simulated in MCF by sufficiently small and large values. A node i is
called a supply node, a demand node, or a transshipment node depending upon whether b; is larger
than, smaller than, or equal to zero, respectively. The minimum-cost flow problem is to find a flow vector
S QA such that z* is an optimal solution of the linear program

min Z CijTij (1&)

(i,5)€eA

This page has been automatically generated with DOC++ 3
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

subject to

Z xij — Z zj; = by VieV, (1b)

(4,7)€A (4,0)€A
Ly < mj < wy, Y(i,j) €A (Lc)

The equations (1b) are the so-called flow conservation constraints and the inequalities (1¢) are the
flow capacities on z. A flow z is called a feasible flow if it satisfies (1b) and (1¢). Let A denote the
node-arc incidence matrix of D. In matrix notation, (1) reads

min{c*z| Nz =b, | <z < u}. (2)

It is well known that A and, thus, the constraint matrix of (2) are totally unimodular. For integer vectors
I, u, and b, there exists always an integer optimal flow (see Grotschel, Lovész, and Schrijver [1988]).

Let 7 € Q" (the so-called node potentials), A € Q*4, and n € Q# be the dual multipliers for the flow
conservation constraints and the lower and upper bounds. The dual problem of (2) is

max{7 b+ A"l —n"u| TN + AT —n" <", >0, A >0}, (3)

Although it is possible to use arbitrary lower bounds, we strongly recommend to use the faster version
of MCF with lower bounds fixed to zero. Each nonzero lower bound can easily be transformed to 0 by
substituting the flow vector z by 2’ +1, ' € Q“. Thus, the system | < 2 < u transforms to 0 < 2’ < u—I.
The system Nz = b transforms to Nz’ = b — N, which is equivalent to decrease b; and to increase b;
by l;; for all (i,j) € A. The objective ¢z transforms to ¢l + min ¢"z'. Figure 1, which is taken from
Ahuja, Magnanti, and Orlin [1993], displays such a lower bound transformation. Note, there is currently
no support to transform nonzero lower bounds to zero, you have to do it by yourself!

b; b; — lij bj + lij

b,
, (lij> uiz) . ~ (O,ui; —lij) ,
O, @ — OO
Tij Tij

Figure 1: Transformation to zero lower bounds.

To apply the network simplex algorithm, we need a full rank constraint matrix. For a connected network
D, the rank of the flow conservation constraints is equal to |[V| — 1, and the flow conservation constraint
for one node, the so-called root node, can be eliminated. We will assume that we have chosen a root
node and have eliminated its flow conservation constraint, i.e., the reduced node-arc incidence matrix
has full rank. For notational simplicity, we also denote the reduced node-arc incidence matrix by N. It
is well known that every nonsingular basis matrix B of N corresponds to a spanning tree of A in D and
vice versa.

Let T C A be a spanning tree in D. The variables z;;, (i,j) € T, are called the basic variables
corresponding to the basis matrix B := /V-,T- Let L and U denote the arcs that correspond to the
nonbasic variables whose values are set to their lower and upper bound, respectively. The triple
(T,L,U) is called a basis structure. For given nonbasic arc sets L and U, the right hand side b
transforms to

Vi=b— Y Nouig— Y Nl

(,5)€U (4,4)EL

This page has been automatically generated with DOCH+ 4
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

The associated basic solution is the solution of the system Bz = ', the values of the node potentials
are determined by the system n™B = c}.. Let ¢;; := ¢;; — m; + m; denote the reduced costs of an arc
(i,j) € A. The dual multipliers A and n are determined by

¢y if (4,5) € L,
Aij 1= 4
“ {O otherwise, @
_Eij if (l,]) € Ua
i =)
g {O otherwise. 5)

A basis structure (T, L,U) is called primal feasible if the associated basic solution z satisfies the flow
bounds (1c¢) and is called dual feasible if for all (4,5) € A:

Ez’j>0 = (7'7.7) € L7 (6)
Ez’j<0 = (17.7) € U7 (7)

A basis structure is called optimal if it is both primal and dual feasible.

Input and Output Format.

Problems and their solutions are expected to be in DIMACS format, which is for our purposes described
in the MCF interface. Further information including network generators and minimum-cost flow codes
can be received via anonymous ftp from dimacs.rutgers.edu in the directory /pub/netflow/general-info,
see also DIMACS [1990], DIMACS [1993], and Johnson and McGeoch [1993].

References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1989). Network Flows. In Nemhauser, Rinnooy Kan,
and Todd [1989], chapter IV, pages 211-369.

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory, Algorithms, and
Applications. Prentice-Hall, Inc., Englewood Cliffs, New Jersey.

Ball, M. O., Magnanti, T. L., Monma, C. L., and Nemhauser, G. L., editors (1995). Network Models,
volume 7 of Handbooks in Operations Research and Management Science. Elsevier Science B.V.,
Amsterdam.

Borndorfer, R., Eisenblatter, A., Grotschel, M., and Martin, A. (1997). Frequency assignment in cellular
phone networks. ZIB Preprint SC 97-35, available at www.zib.de.

Chvatal, V. (1980). Linear programming. W. H. Freeman and Company, New York.
Dantzig, G. B. (1963). Linear Programming and Extensions. Princeton University Press, Princeton.

DIMACS (1990). The first DIMACS international algorithm implementation chal-
lenge: Problem definitions and specifications. Available via WWW at URL
ftp://dimacs.rutgers.edu/pub/netflow/general-info.

This page has been automatically generated with DOC++ 5
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

DIMACS (1993). The first DIMACS international algorithm implementation challenge. Available via
WWW at URL ftp://dimacs.rutgers.edu/pub/netflow.

Du, D.-Z. and Pardalos, P. M., editors (1993). Network Optimization Problems: Algorithms, Applications
and Complexity, volume 2 of Series on Applied Mathematics, Singapore, New York, London. World
Scientific Publishing Co. Pte. Ltd.

Eisenblatter, A. (1998). A frequency assignment problem in cellular phone networks. In Du, D. and Parda-
los, P. M., editors, DIMACS series in discrete mathematics and theoretical computer science,, vol-

ume 40, pages 109-115. American Mathematical Society, Providence, RI. Available as ZIB Preprint
SC 97-27 at www.zib.de

Grotschel, M., Lovész, L., and Schrijver, A. (1988). Geometric algorithms and combinatorial optimization.
Springer Verlag, Berlin.

Helgason, R. V. and Kennington, J. L. (1995). Primal Simplex Algorithms for Minimum Cost Network
Flows. In Ball, Magnanti, Monma, and Nemhauser [1995], chapter 2, pages 85-133.

Johnson, D. S. and McGeoch, C. C., editors (1993). Network Flows and Matching, volume 12 of DIMACS:
Series in Discrete Mathematics and Theoretical Computer Science. American Mathematical Society.

Lobel, A. (1998). Optimal Vehicle Scheduling in Public Transit. PhD thesis, Technische
Universitdt Berlin, November 1997. Shaker Verlag, 1998. Available via WWW at URL
ftp://ftp.zib.de/pub/zib-publications/books/Loebel.disser.ps, but observe the publisher’s
copyright restrictions.

Nembhauser, G. L., Rinnooy Kan, A. H. G., and Todd, M. J., editors (1989). Optimization, volume 1 of
Handbooks in Operations Research and Management Science. Elsevier Science B.V., Amsterdam.

Veldhorst, M. (1993). A bibliography on network flow problems. In Du and Pardalos [1993], pages
301-331.

This page has been automatically generated with DOC++ 6
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

Changes.

Version 1.2:

Minor bug fix in main.c.

Correct handling of time.h, sys/time.h, and sys/times.h.

Better dependencies handling on unix/linux systems (requires GNU make).

Removed prototyp.h and made function prototyping as standard.

Added prefix MCF_ to all names and identifiers.

e Windows support for a Microsoft Visual C++ 6.0 environment.

Version 1.1:

MCF is now stable for 64-bit architectures.

The objective value is now be computed correctly by mcflight.

Fixed arc values are handled correctly.

e Windows support for a Microsoft Visual C++ 5.0 environment

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

MCF data structures.

Names

typedef long

typedef long*

typedef long

MCF _flow_t
MCF flow_p
MCF _cost_t

typedef long* MCF _cost_p

typedef double

MCF flow_t

typedef double*

typedef double

MCF flow_p

MCF _cost_t

typedef double*

typedef struct

typedef struct

typedef struct

typedef struct

typedef struct

typedef struct

3.1 struct
3.2 struct
3.3 struct

MCF _cost_p

MCF _node
MCF _node_t

MCF_node*
MCF _node_p

MCF_arc
MCF _arc_t

MCF_arc*
MCF _arc_p

MCF _network
MCF _network_t

MCF _network*
MCF _network_p

MCF _node
MCF _arc
MCF _network

Default flow type definition
Default flow pointer definition
Default cost type definition
Default cost pointer type definition

Flow type definition if MCF_FLOAT is de-
fined

Flow pointer definition if MCF_FLOAT is de-
fined

Cost type definition if MCF_FLOAT is de-
fined

Cost pointer definition if MCF_FLOAT is de-
fined

Node type definition

Node pointer definition

Arc type definition

Arc pointer definition

Network type definition

Network pointer definition

Node descriptionc..oo... 10
Are description 13
Network description 16

In the following, we give a description of the variable types and the data structures of MCF, which are
defined in the file "mcfdefs.h”. For costs and flows, it is possible either to use the faster integer arithmetic
restricted to (4-byte) integers or to use floating point arithmetic with double precision.

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

For the network simplex algorithm, the input network is assumed to be connected, which is ensured by
the following simple procedue: Having red a problem from file, we add to V one artificial root node,
denoted by ”0”. Each original node ¢ of V' is then connected to the root node 0 either by the artificially
generated arc (7,0) if 7 is a supply or transshipment node or by the artificially generated arc (0,4) if ¢ is
a demand node.

Node, arc, and network information are stored in the following data structures.

This page has been automatically generated with DOC++ 9
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

3.1

struct MCF_node

Members

3.1.1

3.1.2

3.1.3
3.14

3.1.5

long

MCF node_p
MCF node_p
MCF node_p
MCF node_p

long

MCF _arc_p
long
MCF _arcp

MCF _arc_p

MCEF flow_t
MCEF _cost_t
MCF flow_t
long

Node description.

number
pred

child
right_sibling
left _sibling

subtreesize

basic_arc
orientation

firstout

firstin

balance
potential
flow

mark

Node description

Node identifierciiiiiiiiin..
predecessor node

First child node

Next child of predecessor

Previous child of predecessor

Number of nodes (including this one) up to
the root node

The node’s basic arc
Orientation of the node’s basic arc

First arc of the neighbour list of arcs leaving
this node

First arc of the neighbour list of arcs entering
this node

Supply/Demand b; of this node
Dual node multipliers
Flow value of the node’s basic arc

Temporary variable

12

12
13

13

Let T' C A be a spanning tree in D, and consider some node v € V'\ {0}. There is an unique (undirected)
path, denoted by P(v), defined by T from v to the root node 0. The arc in P(v), which is incident to
v, is called the basic arc of v. The other terminal node u of this basic arc is called the predecessor
(node) of v. The basic arc of v is called upward (downward) oriented if v is the tail (head) node of its
basic arc. If v is the predecessor of some other node u, we call u a child (node) of v. Given some order
of all childs of v, and let v and w be two different childs of v. If u is smaller than w with respect to the
given order, we call u the left sibling of w and w the right sibling of u. If there is no child u being
smaller (greater) than a given child w, then w has no left (right) sibling. Each node has at most one
child reference, the other children of a node can be reached by traversing the sibling links. The number

of nodes in P(V) is called the subtree size of v.

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

10

The subtree size and predecessor variables are used by the ratio test. The orientation, child, and sibling
variables are used for the computation of the node potentials. Figure 2 shows a small example of a rooted
basis tree for our data structures (the underlying network is a copy from Ahuja, Magnanti, and Orlin
[1993]).

nil

nil
left sibling
— DasiC arc ——» child right sibling
node 0 1 2 3 4 5 6 7 8
subtree size | 9 8 5 2 1 1 1 2 1
predecessor | nil 0 1 2 3 3 2 1 7
child 1 2 3 4 nil nil nil 8 | nil
right sibling | nil nil 7 6 5 nil nil nil | nil
left sibling nil | nil nil | nil | nil 4 3 2 | nil
orientation - | down | down | up | down | down | down | up | up
Figure 2: Rooted basis tree.
This page has been automatically generated with DOC++ 11

DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.1.1

long number

Node identifier

Node identifier.

This variable is only used to assign some identification to each node. Typically, as for the DIMACS
format, nodes are indexed from 1 to n, where n denotes the number of nodes.

3.1.2

long orientation

Orientation of the node’s basic arc

Orientation of the node’s basic arc.

This variable stands for the orientation of the node’s basic arc. The value UP (= 1) means that the arc
points to the father, and the value DOWN (= 0) means that the arc points from the father to this node.

3.1.3

MCF flow_t balance

Supply/Demand b; of this node

Supply/Demand b; of this node.

A node 7 is called a supply node, a demand node, or a transshipment node depending upon whether b;
is larger than, smaller than, or equal to zero, respectively.

This page has been automatically generated with DOCH+].2
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.1.4

MCF _cost_t potential

Dual node multipliers

Dual node multipliers.

This variable stands for the node potential corresponding with the flow conservation constrait of this
node.

3.1.5

long mark

Temporary variable

Temporary variable.

This is a temporary variable, which you can use as you like.

3.2

struct MCF _arc

Arc description

Members
MCF_ node.p tail Tail node
MCF_nodep head Head node
MCF_arc_p nextout Next arc of the neighbour list of arcs leaving
the tail node
MCF_arc_p nextin Next arc of the neighbour list of arcs entering
the head node
3.2.1 MCF cost.t cost ATC COSES o vve e 14

13

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

3.2.2 MCF_flowt upper Arc upper bound 14

3.2.3 MCF flowt lower Arc lower bound 15

3.24 MCF flowt flow Are flow value ... Ll 15

3.2.5 long ident Are status ... 15
3.2.1

MCF _cost_t cost

Arc costs

Arc costs.
This variable stands for the arc cost (or weight).

Our primal feasible starting basis consists just of artificial arcs (corresponding to a slack basis), and all
originally defined arcs are first nonbasic at their lower bounds. The costs of the artificial arcs are set to
MAX_ART_COST, which is defined in the file mcfdefs.h. It is easy to see that any feasible and optimal
solution with artificial arcs is also optimal and feasible for the original problem without artificials iff no
artifical arc yields a nonzero flow value. If, however, a solution contains an artificial arc with positive
flow, the original problem is either indeed infeasible or the MAX_ART_COST is just too small compared
to the cost coefficients of the original arcs. If the latter is the case, increase MAX_ART_COST, but we
also strongly recommend to use then floating point arithmetic!

3.2.2

MCF flow_t upper

Arc upper bound

Arc upper bound.

This variable stands for the arc upper bound value. Note that an unbounded upper bound is set to
UNBOUNDED, which is defined in the file mcfdefs.h. Per default, UNBOUNDED is set to 10°. Note,
this value may be too small for your purposes, and you should increase it appropriately. However, we
strongly recommend to use then floating point arithmetic (define MCF_FLOAT)!

This page has been automatically generated with DOCH+].4
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.2.3

MCF_flow_t lower

Are lower bound

Arc lower bound.

This variable stands for the arc lower bound value. Note, this variable is only active if the
MCF_LOWER_BOUNDS variable is defined! An negative unbounded lower bound is set to -
UNBOUNDED, see also the arc upper bound.

3.2.4

MCF flow_t flow

Arc flow value

Arc flow value.

This variable stands for the arc’s flow value. Note that the flow value is not set within the main (primal
or dual) iteration loop; actually, it can only be computed using the function primal_obj().

3.2.5

long ident

Arc status

Arc status.

This variable shows the current arc status. Feasible is BASIC (for basic arcs), MCF_AT_LOWER_BOUND
(nonbasic arcs set to lower bound), MCF_AT_UPPER_BOUND (nonbasic arcs set to the upper bound),
MCF_AT_ZERO (nonbasis arcs set to zero), or FIXED (arcs fixed to zero and being not considered by
the optimization).

This page has been automatically generated with DOCH+].5
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.3

struct MCF _network

Network description

Members

3.3.1 long n Number of nodesc.covin.. 16
3.3.2 long m Number of arcsoooiiiiiiiiiia.. 17
3.3.3 long primal unbounded Primal unbounded indicator 17
3.34 long dual_unbounded Dual unbounded indiciator 17
3.3.5 long feasible Feasible indicator 18
3.3.6 double optcost Costs of current basis solution 18
3.3.7 MCF_nodep nodes Vector of nodes 18
3.3.8 MCF_node p stop_nodes First infeasible node address 19
3.3.9 MCF .arcp arcs Vector of arcs ...t 19
3.3.10 MCF _arc_p stop_arcs First infeasible arc address 19
3.3.11 MCF _arc_p dummy _arcs Vector of artificial slack arcs 20
3.3.12 MCF _arc_p stop_dummy First infeasible slack arc address 20
3.3.13 long iterations Tteration count 20

3.3.14 MCF._nodep (*find_iminus) (long n, MCF_node_p nodes,
MCF _node_p stop_nodes, MCF _flow_p delta)
Dual pricing rule, 21

3.3.15 MCF _arc_p (*find_bea) (long m, MCF_arc_p arcs, MCF _arc_p stop_arcs,
MCF _cost_p red_cost_of_bea)
Primal pricing rule, 21

3.3.1

long n

Number of nodes

Number of nodes.

This variable stands for the number of originally defined nodes without the artificial root node.

This page has been automatically generated with DOCH+].6
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.3.2

long m

Number of arcs

Number of arcs.

This variable stands for the number of arcs (without the artificial slack arcs).

3.3.3

long primal unbounded

Primal unbounded indicator

Primal unbounded indicator.

This variable is set to one iff the problem is determined to be primal unbounded.

3.3.4

long dual_unbounded

Dual unbounded indiciator

Dual unbounded indiciator.

This variable is set to one iff the problem is determined to be dual unbounded.

This page has been automatically generated with DOCH+].7
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.3.5

long feasible

Feasible indicator

Feasible indicator.

This variable is set to zero if the problem provides a feasible solution. It can only be set by the function
primal feasible() or dual feasible() and is not set automatically by the optimization.

3.3.6

double optcost

Costs of current basis solution

Costs of current basis solution.

This variable stands for the costs of the current (primal or dual) basis solution. It is set by the return
value of primal obj() or dual_obj().

3.3.7

MCF _node_p nodes

Vector of nodes

Vector of nodes.

This variable points to the n 4+ 1 node structs (including the root node) where the first node is indexed
by zero and represents the artificial root node.

This page has been automatically generated with DOCH+].8
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.3.8

MCF_node_p stop_nodes

First infeasible node address

First infeasible node address.

This variable is the address of the first infeasible node address, i.e., it must be set to nodes + n + 1.

3.3.9

MCF_arc_p arcs

Vector of arcs

Vector of arcs.

This variable points to the m arc structs.

3.3.10

MCF _arc_p stop_arcs

First infeasible arc address

First infeasible arc address.

This variable is the address of the first infeasible arc address, i.e., it must be set to nodes + m.

This page has been automatically generated with DOCH+].9
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.3.11

MCF_arc.p dummy _arcs

Vector of artificial slack arcs

Vector of artificial slack arcs.
This variable points to the artificial slack (or dummy) arc variables and contains n arc structs. The

artificial arcs are used to build (primal) feasible starting bases. For each node i, there is exactly one
dummy arc defined to connect the node ¢ with the root node.

3.3.12

MCF_arc_p stop_.dummy

First infeasible slack arc address

First infeasible slack arc address.

This variable is the address of the first infeasible slack arc address, i.e., it must be set to nodes + n.

3.3.13

long iterations

Tteration count

Iteration count.

This variable contains the number of main simplex iterations performed to solve the problem to optimality.

This page has been automatically generated with DOCH+ 20
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

3.3.14

MCF node_ p (*find_iminus) (long n, MCF nodep nodes, MCF_nodep
stop_nodes, MCF flow_p delta)

Dual pricing rule

Dual pricing rule.

Pointer to the dual pricing rule function that is used by the dual simplex code.

3.3.15

MCF _arc_p (*find bea) (long m, MCF arcp arcs, MCF_arcp stop_arcs,
MCF _cost_p red_cost_of bea)

Primal pricing rule

Primal pricing rule.

Pointer to the primal pricing rule function that is used by the primal simplex code.

This page has been automatically generated with DOCH+ 2].
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

MCEF interface. (vec)

Names

4.1 Problem reading and writing. L. 22

4.2 Primal network simplex. 25

4.3 Dual network simplex. i 29

4.4 MCF utilities. . 32
4.1

Problem reading and writing.

Names
4.1.1 extern long MCF read_dimacs min (char *filename, MCF network._p net)
Reading procedure 22
4.1.2 extern long MCF_write_solution (char *infile, char *outfile,
MCF _network_p net, time_t sec)
Writing procedure 24
4.1.1

extern long MCF _read_dimacs_min (char *filename, MCF _network_p net)

Reading procedure

Reading procedure.

Reads minimum-cost flow problem (provided in an extended DIMACS format) from input file named
filename, mallocs the necessary memory, and creates the network data structure. Each input data are
assumed to have the following structure:

e For a network with n nodes it is assumed that the nodes are identified by the integers 1 through n.

e Capacities are integer valued. If you need floating point values, you have to change the source by
yourself. Costs and flows are per default integer valued, but with the FLOAT definition in the
Makefile, you can use doubles.

This page has been automatically generated with DOCH+ 22
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

e It is assumed that I;; < u;; for all (4, j) € A.

e There is no a priori restriction on the number of nodes n or the number of arcs m.

e There may be multiple arcs (i, j) between any pair of nodes ¢ and j. The arcs may have differing
costs, capacities, and lower bounds.

e It is not necessarily the case that (i,j) € A implies (j,i) € A.

e If both (i,7) and (j,4) are in A, it is not necessarily the case that ¢;; = —cj;.

e It is not assumed that the network has a feasible solution nor that the network is connected. This

properties will be provided by the code by introducing an artificial root node that is connected via
artifical slack arcs to each node of the input digraph.

The standard DIMACS file format for network input and output is as follows: All files contain ASCII
characters. Input and output files contain several types of lines, described below. A line is terminated
with an end-of-line character. Fields in each line are separated by at least one blank space. Each line
begins with a one-character designator to identify the line type.

Input Files: First, for minimum-cost flow problems, we recommend to use suffixes .min to be conform
with the DIMACS format. Second, files are assumed to be well-formed and internally consistent: node
identifier values are valid, nodes are defined uniquely, exactly m arcs are defined, and so forth.

¢ Comments. Comment lines give human-readable information about the file and are ignored by
programs. Comment lines can appear anywhere in the file. Each comment line begins with a
lower-case character c.

c This is an example of a comment line.

e Problem line. There is one problem line per input file. The problem line must appear before any
node or arc descriptor lines. For network instances, the problem line has the following format.

p min NODES ARCS

The lower-case characters p min signify that this is a minimum-cost flow problem. The NODES field
contains an integer value specifying n, the number of nodes in the network. The ARCS field contains
an integer value specifying m, the number of arcs in the network.

e Node Descriptors. All node descriptor lines must appear before all arc descriptor lines. They
must describe all supply and demand nodes, i.e., nodes ¢ with a nonzero node imbalance b; must
appear. Transshipment nodes may be leaved out. There is at most one node descriptor line for
each node having the following format.

n ID FLOW

The lower-case character n signifies that this is a node descriptor line. The ID field gives a node
identification number, an integer between 1 and n. The FLOW field gives the node flow value b;.

e Arc Descriptors. There is one arc descriptor line for each arc in the network. Arc descriptor
lines are of the following form.

a SRC DST LOW UPP COST

This page has been automatically generated with DOCH+ 23
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

The lower-case character a signifies that this is an arc descriptor line. For a directed arc (4,7),
the SRC field gives the identification number for the source vertex ¢, and the DST field gives the
destination vertex j. Identification numbers are integers between 1 and n. The LOW field contains
the lower capacity value /;; and the UPP field contains the upper capacity value u;;. Both value can
be replaced by "free” or "FREE” identifying unbounded capacities. The value of the capacity is
then set to UNBOUNDED defined in mcfdefs.h. The COST field contains c;;.

Return Value: integer long value <> 0 indicating an error.
Parameters: filename — name of input file to be read.
net — reference to network data structure.

4.1.2

extern long MCF _write_solution (char *infile, char *outfile, MCF_network p

net, time_t sec)

Writing procedure

Writing procedure.

Writes solution vector in human readable DIMACS format to file. If the infile is equal to the outfile
name, the solution is append to the input file. Otherwise, the solution is written to outfile. The output
file should list the solution value and the nonzero flow assignments for all arcs (i, j) in A. Three types of
lines may appear in output files.

e Comment Lines. Comment lines are identical in form to those defined for input files. If there is
no feasible solution then the algorithm should report this fact on a comment line (in such a case,
neither solution lines nor flow lines will appear in the output).

e Solution Lines. The solution line has the following format.
s SOLUTION

The lower-case character s signifies that this is a solution line. The SOLUTION field contains the
solution value }°; o 4 ¢i;ij-

¢ Flow Assignments. There is one flow assignment line for each arc in the network. Flow assignment
lines have the following format.

f SRC DST FLOW

The lower-case character £ signifies that this is a flow assignment line. For arc (4,), the SRC and
DST fields give ¢ and j, respectively. The FLOW field gives z;;.

This page has been automatically generated with DOCH+ 24
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

Return Value:

integer long value <> 0 indicating an error.

Parameters: infile — Name of input file name
outfile — name of output file name
net — reference to network data structure.
sec — running time of optimization process
4.2

Primal network simplex.

Names
4.2.1 Slack basis. e 25
4.2.2 Main iteration loop. 26
4.2.3 Pricing. e 27

4.2.1

Slack basis.
Names
4211 extern long MCF _primal start_artificial (MCF network p net)
Generate primal feasible slack basis 25
4.2.1.1

extern long MCF _primal start_artificial (MCF _network_p net)

Generate primal feasible slack basis.

Generate primal feasible slack basis

Let D' := (V U {0}, A") denote the network obtained by adding the artificial root node 0 to V' and the
artificial slack arcs (i,0) and (0,4), respectivly, to A. Each artificial slack arc has a lower bound of 0, an
upper bound of infinity, and a sufficiently large cost coefficient MAX_ART_COST, which is defined in the

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

25

file mcfdefs.h. The initial basis tree consist of all artificial slack arcs, each original arc becomes nonbasic
at its lower bound, and no arc becomes nonbasic at its upper bound. Such an initial basis structure is
called artificial basis structure. Obviously, this artificial basis structure is primal feasible for D' and

the original network D is feasible if the network D’ has a

The use of an artificial basis tree has several advantages. First, it has a simple structure and can be
generated quickly. Second, the ratio test and the basis update are quite fast for the first iterations.
We have also tried to generate an initial basis structure using a crash procedure. The performance,
however, was always slower than starting with an artificial basis tree. The only exceptions occur for
special applications where particular problem knowledge can be exploited, for instance, using a delayed

column generation.

Return Value: integer long value <> 0 indicating an error.
Parameters: net — reference to network data structure.
4.2.2

Main iteration loop.

Names

4.2.2.1 extern long MCF _primal net_simplex (MCF network_p net)
Primal network simplex main iteration loop

4.2.2.1

26

extern long MCF _primal net_simplex (MCF_network_p net)

Primal network simplex main iteration loop

Primal network simplex main iteration loop.

For a detailed description of all these single network simplex steps, the reader is referred to Helgason and

Kennington [1995].

Return Value: integer long value <> 0 if the problem is primal unbounded.
Parameters: net — reference to network data structure.

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

26

4.2.3

Pricing.
Names
4.2.3.1 Multiple partial pricing.c. i 27
4.2.3.2 First eligible arc rule. i 28
4.2.3.3 Dantzig’s rule. e 29

From our point of view, the pricing rule has the most significant influence on the performance of a network
simplex implementation. In the literature, there are some pricing rules described as Dantzig’s rule, first
eligible arc rule, or candidate list rules. We have implemented and tested these pricing rules in slightly
modified ways and provide them in our implementation. It turned out that our by far fastest rules are
special candidate list rules, called multiple partial pricing.

Return Value: reference to the basis entering arc or NULL pointer if the current basis is
optimal with respect to the optimality tolerance.
Parameters: net — reference to network data structure.
4.2.3.1

Multiple partial pricing.

Names

extern MCF_arc_p
MCF _primal bea_mpp_30_5 (long m, MCF_arc_p arcs,
MCF _arc_p stop_arcs,
MCF _cost_p red_cost_of_bea)
K=30, B=5

extern MCF_arc_p
MCF _primal bea_mpp_50_10 (long m, MCF_arc_p arcs,
MCF _arc_p stop_arcs,
MCF _cost_p red_cost_of_bea)
K =50, B=10

extern MCF_arc_p
MCF _primal_bea_mpp_200_20 (long m, MCF _arc_p arcs,
MCF _arc_p stop_arcs,
MCF _cost_p red_cost-of_bea,)
K =200, B=20

The declaration of the multiple partial pricing rules is

This page has been automatically generated with DOCH+ 27
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

extern arc_t *primal_bea_mpp_K _B (int m, arc_t *arcs, arc_t *stop_arcs, cost_t *red_cost_of_bea);

where K and B denote two natural numbers.

The arc set A (without the artificial slack arcs) is divided into [%] candiadate lists, each of size at
most K. If the arcs are indexed from 1 to |4|, the k** candidate list includes all arcs ¢ satisfying (¢ — 1)
modulo K = (k—1). There is a hot-list of at most B + K arcs, which is initially empty. The candiate list
number nezt, which defines the first to be examined candidate list in the initial pricing call, is set to 1.
The candidate lists are always examined in a wraparound fashion. For a pricing call, the following steps
are performed: First, the reduced costs of the arcs being currently in the hot-list are recomputed. If the
new reduced costs of such an arcs becomes nonnegative, this arc is immediatly removed from the hot-list.
Second, as long as the hot-list can be filled with at least K additional arcs and not all candidate lists
have been examined in this pricing call, we price out all arcs of the next candidate list, add all nonbasic
arcs of this list having negative reduced costs to the hot-list, and increment the next variable by 1 (if
next>K , otherwise we reset next to 1). Third, if all candidate lists have been examined, but the hot-list
is still empty, the current basis structure is optimal. Otherwise, some arc of the hot-list that violates
the reduced cost criterion at most is selected as the basis entering arc. The last step of a pricing call is
the preparation of the hot-list for the next pricing call: The new hot-list for the next pricing contains at
most B arcs among those arcs of the current hot-list that are not the basis entering arc and that have
the most invalid reduced costs.

Multiple partial pricing is very sensitive to the number of arcs making necessary a fine tuning for every
problem class. We use and recommend the following default values for K and B depending on the number
of arcs (note that a further fine tuning for your data may speed up the code):

Number of arcs K |J
|A|<10, 000 30 | 5
10,000 < |A| £ 100,000 | 50 | 10
| A|>100,000 200 | 20

4.2.3.2

First eligible arc rule.

Names

4.2.3.2.1 extern MCF_arc_p
MCF _primal bea_cycle (long m, MCF _arc_p arcs,
MCF _arc_p stop_arcs,
MCEF _cost_p red_cost_of_bea)
First eligible arc pricing 29

This page has been automatically generated with DOCH+ 28
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

4.2.3.2.1

extern MCF_arc.p MCF _primal bea_cycle (long m, MCF._arcp arcs,
MCEF _arc_p stop_arcs, MCF _cost_p

red_cost_of_bea)

First eligible arc pricing

First eligible arc pricing. Searches for the basis entering arc in a wraparound fashion.

4.2.3.3

Dantzig’s rule.

Names
4.2.3.3.1 extern MCF_arcp
MCF _primal bea_all (long m, MCF_arc_p arcs,
MCF _arc_p stop_arcs,
MCF _cost_p red_cost_of_bea)
Dantzig’s rule ... i 29

4.2.3.3.1

extern MCF_arc.p MCF _primal bea_all (long m, MCF._arcp arcs,
MCF _arc_p stop_arcs, MCF cost_p

red_cost_of_bea)

Dantzig’s rule

Dantzig’s rule. Determins the arc violating the optimality condition at most.

4.3

Dual network simplex.

This page has been automatically generated with DOCH+ 29
DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

Names

4.3.1 Start basis. e 30

4.3.2 Main iteration loop. i 30

4.3.3 Pricing. 31
4.3.1

Start basis.

Names

43.1.1 extern long MCF _dual start_artificial (MCF network p net)
Generate dual feasible starting basis 30

4.3.1.1

extern long MCF _dual start_artificial (MCF network_p net)

Generate dual feasible starting basis

Generate dual feasible starting basis.

Return Value: integer long value <> 0 if the problem is dual infeasible.
Parameters: net — reference to network data structure.
4.3.2

Main iteration loop.

Names
43.2.1 extern long MCF _dual _net_simplex (MCF _network p net)
Dual network simplex main iteration loop . 31
This page has been automatically generated with DOC++ 30

DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

4.3.2.1

extern long MCF _dual net_simplex (MCF _network_p net)

Dual network simplex main iteration loop

Dual network simplex main iteration loop.

Return Value: integer long value <> 0 if the problem is dual infeasible or unbounded.
Parameters: net — reference to network data structure.
4.3.3
Pricing.
Names
4331 Multiple partial pricing 31
4.3.3.2 First eligible arc rule. 32

The dual pricing methods are similar to the primal ones, but in the dual code we have to search for basis
leavings arcs violating their bounds instead of finding a basis entering arc instead of violating the reduced
cost criterion.

4.3.3.1

Multiple partial pricing

Names
extern MCF _node_p
MCF _dual_iminus_ mpp_30_5 (long n, MCF node_p nodes,
MCF node_p stop-nodes,
MCF_flow_p delta)
K=380), B=5
extern MCF node_p
MCF _dual_iminus_ mpp_50_10 (long n, MCF_node_p nodes,
MCF node_p stop_nodes,
MCF flow_p delta)
K =250, B=10
This page has been automatically generated with DOC++4 3].

DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

4.3.3.2

First eligible arc rule.

Names

4.3.3.2.1 extern MCF _node_p
MCF _dual _iminus_cycle (long n, MCF _node_p nodes,
MCF_node_p stop_nodes,
MCF_flow_p delta)
First eligible arc pricing

4.3.3.2.1

extern MCF_node.p MCF _dual_iminus_cycle (long n, MCF _node_p nodes,

MCF _node_p stop_nodes,
MCF flow_p delta)

First eligible arc pricing

First eligible arc pricing. Searches for the basis leaving arc in a wraparound fashion.

4.4

MCF utilities.

Names
441 extern long MCF_free (MCF _network_p net)

Frees malloced data structures 33
4.4.2 extern double MCF_primal obj (MCF _network_p net)

Primal objective ¢"x il 33
443 extern double MCF_dual_obj (MCF_network_p net)

Dual objective 7™+ A"l —n™u ... 33
444 extern long MCF _primal feasible (MCF_network_p net)

Primal basis checking 34
4.4.5 extern long MCF_dual_feasible (MCF_network_p net)

Dual basis checking 34
4.4.6 extern long MCF_is_basis (MCF_network._p net)

This page has been automatically generated with DOC++4 32

DOC++ is ©1995 by Roland Wunderling and Malte Zd&ckler

Basis checking oo ol 34

4.4.7 extern long MCF_is_balanced (MCF_network_p net)
Flow vector checking 35

4.4.1

extern long MCF free (MCF network_p net)

Frees malloced data structures

Frees malloced data structures.

Parameters: net — reference to network data structure.

4.4.2

extern double MCF _primal obj (MCF_network_p net)

Primal objective c™ x

Primal objective ¢” x.

Parameters: net — reference to network data structure.

4.4.3

extern double MCF _dual_obj (MCF network_p net)

Dual objective 7"b + A"l — n"u

Dual objective 77b + ATl — n"u.

Parameters: net — reference to network data structure.

This page has been automatically generated with DOC++ 33
DOC++ is ©1995 by Roland Wunderling and Malte Zockler

4.4.4

extern long MCF _primal feasible (MCF _network_p net)

Primal basis checking.

Checks whether a given basis is primal feasible.

Return Value: value <> 0 indicates primal infeasible basis.
Parameters: net — reference to network data structure.
4.4.5

Primal basis checking

extern long MCF _dual feasible (MCF _network_p net)

Dual basis checking.

Checks whether a given basis is dual feasible.

Return Value: value <> 0 indicates dual infeasible basis.
Parameters: net — reference to network data structure.
4.4.6

Dual basis checking

extern long MCF _is_basis (MCF _network_p net)

Basis checking.

Checks whether the given basis structure is a spanning tree.

Return Value: value <> 0 indicates infeasible spanning tree.
Parameters: net — reference to network data structure.

Basis checking

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

34

4.4.7

extern long MCF _is_balanced (MCF _network_p net)

Flow vector checking.

Checks whether a given basis solution defines a balanced flow on each node.

Return Value: value <> 0 indicates unbalanced flow vector.
Parameters: net — reference to network data structure.

Flow vector checking

This page has been automatically generated with DOC++
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

35

ZIB Academic License.

This license is designed for ZIB software to guarantee freedom to share and change software for academic
use, but restricting commercial firms from exploiting our knowhow for their benefit. The precise terms
and conditions for use, copy, distribution, and modification are as follows.

The term ”Program” below refers to source, object, and executable code, and a the term ”Work based
on the Program” means either the Program or any derivative work under copyright law: that is a work
containing the Program or a portion of it, either verbatim or with modifications and/or translated into
another language. Each licensee is addressed as "you”.

e This license applies to you only if you are a member of a noncommercial and academic institution,
e.g., a university. The license expires as soon as you are no longer a member of this institution.

e Every publication and presentation for which the Work based on the Program or its output has been
used must contain an appropriate citation and acknowledgement of the author(s) of the Program.

¢ You may copy and distribute the Program or Work based on the Program in source, object, or
executable form provided that you also meet all of the following conditions:

— You must cause any work that you distribute or publish, that in whole or in part contains or

is derived from the Program or any part thereof, to be licensed as a whole at no charge under
the terms of this License. You must accompany it with this unmodified license text.
These requirements apply to the Program or Work based on the Program as a whole. If
identifiable sections of that work are not derived from the Program, and can be reasonably
considered as independent and separate works in themselves, this License does not apply to
those sections when you distribute them as separate works. But when you distribute the same
sections as a Work based on the Program, the distribution of the whole must be on the terms
of this license, whose permissions for other licensees extend to the entire whole and, thus, to
each and every part regardless of who wrote it.

— You must cause the modified files to carry prominent notices stating that you changed the files
and the date of any change.

— You must keep track of access to the Program (e.g., similar to the registration procedure at
Z1B).

— You must accompany it with the complete corresponding human-readable source code. The
source code for a work means the preferred form of the work for making modifications to it. For
an executable work, complete source code means all the source code for all modules it contains,
plus any associated interface definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source code distributed
need not include anything that is normally distributed (in either source or binary form) with
the major components (compiler, kernel, and so on) of the operating system on which the
executable runs, unless that component itself accompanies the executable.

¢ You may not copy, modify, sublicense, or distribute the Program except as expressly provided under
this License. Any attempt otherwise to copy, modify, sublicense, or distribute the Program is void
and will automatically terminate your rights under this License. However, parties who have received
copies or rights from you under this License will not have their licenses terminated so long as such
parties remain in full compliance.

This page has been automatically generated with DOC++ 36
DOC++ is ©1995 by Roland Wunderling and Malte Zockler

e You are not required to accept this License, since you have not signed it. However, nothing else
grants you permission to use, modify, or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by using, modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance of this
License to do so and all its terms and conditions for copying, distributing or modifying the Program
or works based on it.

e Each time you redistribute the Program or Work based on the Program, the recipient automatically
receives a license from the original licensor to copy, distribute, or modify the Program subject to
these terms and conditions. You may not impose any further restrictions on the recipient’s exercise
of the rights granted herein. You are not responsible for enforcing compliance by third parties to
this License.

e If as a consequence of a court judgement or allegation of patent infringement or for any other reason
(not limited to patent issues), conditions are imposed on you (whether by court order, agreement, or
otherwise) that contradict the conditions of this License, they do not excuse you from the conditions
of this License.

e If you wish to incorporate parts of the Program into other programs whose distribution conditions
are different, write to ZIB to ask for permission.

NO WARRANTY!

e Because the program is licensed free of charge, there is no warranty for the program to the extent
permitted by applicable law. The copyright holders provide the program ”as is”; without warranty
of any kind, either expressed or implied, including, but not limited to, the implied warranties
of merchantability and fitness for a particular purpose. The entire risk as to the quality and
performance of the program is with you. Should the program prove defective, you assume the cost
of all necessary servicing, repair, and correction.

e In no event will any copyright holder, or any other party who may modify and/or redistribute the
program as permitted above, be liable to you for damages, including any general, special, incidental
or consequential damages arising out of the use or inability to use the program (including but not
limited to loss of data or data being rendered inaccurate or losses sustained by you or third parties
or a failure of the program to operate with any other programs), even if such holder or other party
has been advised of the possibility of such damages.

This page has been automatically generated with DOC++ 37
DOC++ is @1995 by Roland Wunderling and Malte Z&ckler

